- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Sánchez, B O (2)
-
Armstrong, R (1)
-
Bianco, F (1)
-
Botticella, M T (1)
-
Cappellaro, E (1)
-
Graham, M L (1)
-
Greggio, L (1)
-
Liu, S (1)
-
Möller, A (1)
-
Narayan, G (1)
-
Paolillo, M (1)
-
Petrecca, V (1)
-
Sako, M (1)
-
Wood-Vasey, W M (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We evaluate the performance of the Legacy Survey of Space and Time Science Pipelines Difference Image Analysis (DIA) on simulated images. By adding synthetic sources to galaxies on images, we trace the recovery of injected synthetic sources to evaluate the pipeline on images from the Dark Energy Science Collaboration Data Challenge 2. The pipeline performs well, with efficiency and flux accuracy consistent with the signal-to-noise ratio of the input images. We explore different spatial degrees of freedom for the Alard–Lupton polynomial-Gaussian image subtraction kernel and analyze for trade-offs in efficiency versus artifact rate. Increasing the kernel spatial degrees of freedom reduces the artifact rate without loss of efficiency. The flux measurements with different kernel spatial degrees of freedom are consistent. We also here provide a set of DIA flags that substantially filter out artifacts from the DIA source table. We explore the morphology and possible origins of the observed remaining subtraction artifacts and suggest that given the complexity of these artifact origins, a convolution kernel with a set of flexible bases with spatial variation may be needed to yield further improvements.more » « less
-
Petrecca, V; Botticella, M T; Cappellaro, E; Greggio, L; Sánchez, B O; Möller, A; Sako, M; Graham, M L; Paolillo, M; Bianco, F (, Astronomy & Astrophysics)Aims.TheVera C. RubinObservatory’s Legacy Survey of Space and Time (LSST) will revolutionize time-domain astronomy by detecting millions of different transients. In particular, it is expected to increase the number of known type Ia supernovae (SN Ia) by a factor of 100 compared to existing samples up to redshift ∼1.2. Such a high number of events will dramatically reduce statistical uncertainties in the analysis of the properties and rates of these objects. However, the impact of all other sources of uncertainty on the measurement of the SN Ia rate must still be evaluated. The comprehension and reduction of such uncertainties will be fundamental both for cosmology and stellar evolution studies, as measuring the SN Ia rate can put constraints on the evolutionary scenarios of different SN Ia progenitors. Methods.We used simulated data from the Dark Energy Science Collaboration (DESC) Data Challenge 2 (DC2) and LSST Data Preview 0 to measure the SN Ia rate on a 15 deg2region of the “wide-fast-deep” area. We selected a sample of SN candidates detected in difference images, associated them to the host galaxy with a specially developed algorithm, and retrieved their photometric redshifts. We then tested different light-curve classification methods, with and without redshift priors (albeit ignoring contamination from other transients, as DC2 contains only SN Ia). We discuss how the distribution in redshift measured for the SN candidates changes according to the selected host galaxy and redshift estimate. Results.We measured the SN Ia rate, analyzing the impact of uncertainties due to photometric redshift, host-galaxy association and classification on the distribution in redshift of the starting sample. We find that we are missing 17% of the SN Ia, on average, with respect to the simulated sample. As 10% of the mismatch is due to the uncertainty on the photometric redshift alone (which also affects classification when used as a prior), we conclude that this parameter is the major source of uncertainty. We discuss possible reduction of the errors in the measurement of the SN Ia rate, including synergies with other surveys, which may help us to use the rate to discriminate different progenitor models.more » « less
An official website of the United States government
